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Abstract

Near-field acoustical holography (NAH) can be used to predict the acoustical properties of noise sources by starting

from measurements of near-field pressures. In particular, the sound pressure, particle velocity, and intensity can all be

estimated on a source plane. In the present work, an equation relating acoustical source properties and the pressure

radiated from a source is derived from the Kirchoff–Helmholtz integral equation and is here referred to as the inverse

Rayleigh method. The inverse Rayleigh method reduces to the Rayleigh integral when the source is located on an infinite

rigid baffle. However, the same equation can also be used to predict the acoustic properties of a source in a more general

environment: i.e., without assuming the presence of an infinite rigid baffle. In this article, the inverse Rayleigh method is

described and then its relative accuracy is compared with other procedures that can be used to predict source particle

velocity from near-field pressure measurements on a planar hologram. By comparing the accuracy of the present NAH

method with other procedures in the case of a large hologram, it was found that the inverse Rayleigh method is accurate

and computationally efficient for predicting the source particle velocity from near-field pressure measurements both with

and without a rigid baffle.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Near-field acoustical holography (NAH) techniques can be used to estimate sound pressure, particle
velocity, and intensity on a source surface (and surfaces that lie between the source and the measurement
surface) based on measurements of the near-field pressure [1–3]. However, if the reconstruction of those
quantities is to be accurate, it is required that the measurement aperture (i.e., the hologram surface) extend
well beyond the source region to avoid spatial Fourier transform-related truncation effects [1–3]. If it is not
possible to extend the measurement surface into the region where the sound pressure drops to sufficiently low
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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levels, owing to physical obstructions, for example, it is not possible to perform accurate projections by using
conventional NAH.

Statistically optimized near-field acoustical holography (SONAH), originally derived in a planar
formulation by Steiner and Hald [4] and later following a simpler approach by Hald [5], was developed to
accommodate situations in which the measurement aperture size was limited either by physical necessity or as
a way of limiting measurement effort. In the SONAH procedure, surface-to-surface projection of the sound
field is performed by using a transfer matrix defined in such a way that all propagating waves and a weighted
set of evanescent waves are projected with optimal average accuracy (i.e., no spatial Fourier transforms are
performed) [4–6]. In this way, the requirement that the measurement surface extend well beyond the source
region can be eliminated without necessarily compromising the accuracy of the procedure.

An alternative approach to the spatial truncation problem is offered by an iterative procedure referred to as
patch holography, which was first suggested by Saijyou and Yoshikawa [7,8], and further developed by other
investigators [9–11]. The effect of the patch procedure is to create a smooth transition of the sound field from
the measured ‘‘patch’’ region to an extrapolated region. Then, the extrapolated measurement pressure is
combined with conventional NAH procedures to project the sound field closer to or farther away from the
source. Non-iterative procedures can also be applied to extrapolate the measurement pressure [12–19].
However, patch holography procedures were not applied in present work since it was possible to make
measurement on a sufficiently large hologram to avoid truncation effects in simulation.

In the past, methods based on the Rayleigh integral have frequently been used to predict far-field pressure
when the particle velocity of sources located on a rigid baffle was known [3,18,20]. However, that approach
can also been used in an inverse sense to predict source particle velocities based on near-field pressure
measurements if appropriate regularization techniques are used [18,21]. It is the latter approach that is
pursued here.

The present work is also related to the method of wave superposition originally suggested by Koopman
et al. [22] in which a relationship between a ‘‘fictional’’ source strength and the radiated pressure field was
derived from the Kirchoff–Helmholtz integral (KHI) [23,24]. In that work, it was assumed that the fictional
source strength was dependent only on source location when estimating the pressure field from source particle
velocity measurements or vice versa. The method of wave superposition is similar to the Rayleigh integral
approach except for the fact that the field pressure is related to the source strength on a virtual source surface
in the former method instead of an actual particle velocity on an infinite source plane in the latter method. The
method of wave superposition (also referred to as the ‘‘equivalent source method’’) has been implemented to
predict the acoustic field from pressure measurements for several types of sources and measurement
configurations [12,13,25–27].

The present work shares one goal with previous work [22], that is, to derive an equation relating acoustical
source variables to the radiated pressure by starting from the KHI. Here, the KHI equation is solved for
planar sources with measurements made in a geometry conformal with the source geometry. It has been found
that a property, referred to as ‘‘source strength’’ in Ref. [22] and ‘‘fictitious source particle velocity’’ in this
work, is dependent on measurement position, projection distance, and source location. It is shown that by
introducing a virtual source plane, the dependence of the fictitious source particle velocity on measurement
location and projection distance is reduced. The fictitious source particle velocity is estimated by using a
regularized least square solution that is optimal for the measurement pressure and location and geometry of
hologram. The fictitious source particle velocity reduces to the source particle velocity as in the Rayleigh
integral when the source is located on an infinite planar rigid baffle [23]. The present work is also similar in
some respects to previous work by Nelson and Yoon [28], who sought to identify the strength of fictional
sources from the radiated pressure by inverting the transfer matrix between the sources and the radiated
pressure. Regularization procedures for more accurate estimation of source properties were extensively
investigated by Nelson and Yoon [28]: in contrast, the relationship between source properties and radiated
pressure is investigated in detail in the present work.

In this article, the relative accuracy of the inverse Rayleigh and other procedures for estimating source particle
velocities from near-field pressure measurements on a planar hologram are quantified by comparing known
particle velocities and predictions from near-field pressure measurements in both numerical simulations and
experiments. In the experimental work, the source particle velocity of a baffled aluminum plate was measured
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directly with accelerometers and compared with particle velocities estimated from near-field measurements.
Comparisons between direct source particle velocity measurements and predictions were made in terms of
mean square error. These results are shown in Sections 3–5. First, though, the theoretical background for the
source velocity estimation procedures is given in the next section.

2. Particle velocity prediction methods based on near-field measurements

In this section, an equation for source particle velocity prediction based on near-field measurements is
derived from the KHI. As noted above, the relationship between source particle velocity and the measurement
pressure reduces to the Rayleigh integral when the source is located on infinite rigid planar baffle. The source
particle velocity can also be estimated by using existing procedures such as NAH and SONAH. Even though
SONAH is a more recently derived procedure than conventional NAH, both NAH and SONAH use the same
propagator in planar implementations, so the accuracy of both procedures should be very similar if the effect
of spatial truncation of the measurement pressure is negligible. In previous work, the NAH [1–3] and SONAH
[4,5] procedures were derived in detail, and the derivation of SONAH in planar coordinates was given in
Ref. [29], so those procedures are not presented in detail in this work. Note that the conventional NAH
calculations presented here were performed as they would have been in an experimental situation: i.e., a spatial,
Tukey window was applied to the data to smooth the transition at the edges of the aperture and the spatial data
was then zero-padded. In addition, conventional wave number filtering procedures were applied. In the latter
procedure, a low pass spatial filter is specified by its cutoff wave number, kc [1–3]. All filtering parameters were
adjusted until the lowest mean square projection error of each procedure was achieved. This was done to ensure
that comparisons were made based on the best performance of each holography procedure.

2.1. Derivation of relation between source property and measurement pressure

The Rayleigh integral, derived from the KHI theorem, can be used to predict far-field pressure or source
particle velocity from near-field pressure measurements for sources located on an infinite rigid baffle. The
Rayleigh integral is not valid and less accurate for predicting sound field properties if the source is not located
on infinite rigid baffle.

The sound pressure, p, at arbitrary locations can be predicted using the KHI theorem if the velocity and
pressure of the source are known [23]: i.e.,

Gðr2 þ k2
Þp� pðr2 þ k2

ÞG ¼ r � ðGrp� prGÞ, (1)

where G is the Green’s function for the Helmholtz equation, k is the wave number, and r is the gradient vector
operator. The pressure satisfying the Helmholtz equation exterior to the source is

pðrÞ ¼ �
1

4p

Z Z
ðGrp� prGÞ � ns dS, (2)

where ns is a unit vector normal to the source surface. Alternatively, if the source is located on the z-plane,
Eq. (2) can be expressed as

pðrÞ ¼
1

4p

Z Z
½pðrsÞrsGðrsjrÞ � GðrsjrÞrspðrsÞ� � ez dS, (3)

where ez is a unit vector in the z-direction and rs denotes the gradient in the direction normal to the source
surface. The definition of the coordinate system for the derivation of the Rayleigh integral and the relationship
between the geometry of the source and measurement planes is shown in Fig. 1. When using an e�iot sign
convention, and if point source and free field conditions are assumed, the Green’s function is [24]

GðrsjrÞ ¼ eikR=R, (4)
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Fig. 1. Definition of source and near-field measurement geometry with a virtual source plane.
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with the result that

rsGðrsjrÞ ¼
ðrs � rÞ

R3
ð�1þ ikRÞ eikR, (5)

rsGðrsjrÞ � ez ¼
ðzs � zÞ

R3
ð�1þ ikRÞ eikR. (6)

By using Euler’s equation, the pressure and normal particle velocity can be related: i.e.,

rspðrsÞ � ez ¼ irouzðrsÞ. (7)

By combining Eqs. (3)–(7), the solution of the KHI theorem reduces to

pðrÞ ¼ �
iro
4p

Z Z
eikR

R

pðrsÞ

rc

1

ikR
� 1

� �
zs � z

R
þ uzðrsÞ

� �
dS. (8)

Here, a new quantity called the fictitious velocity, ufic(rs,r), is introduced. It is defined as

ufic;zðrs; rÞ ¼
pðrsÞ

rc

1

ikR
� 1

� �
zs � z

R
þ uzðrsÞ: (9)

By using the fictitious velocity, the pressure estimated using the KHI becomes

pðrÞ ¼ �
iro
4p

Z Z
eikR

R
ufic;zðrs; rÞdS. (10)

If a virtual source plane is introduced as shown in Fig. 1, and a fictitious normal source particle velocity is
estimated on the virtual instead of the actual source plane, then Eqs. (9) and (10) become

ufic;zðrs;v; rÞ ¼
pðrs;vÞ

rc

1

ikRv

� 1

� �
zs;v � z

Rv

þ uzðrs;vÞ; (11)

pðrÞ ¼ �
iro
4p

Z Z
eikRv

Rv

ufic;zðrs;v; rÞdS. (12)
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It is important to note that the introduction of a virtual source plane farther away from the actual source
plane reduces the magnitude of the near field components in the fictitious normal source particle velocity and
makes it possible to estimate the pressure or particle velocity on the actual source plane by combining back
and forward projection of measurement pressure.

When comparing Eqs. (9)–(12) with the method of wave superposition, it can be seen that the fictitious
normal source particle velocity is dependent on the measurement location rather than being dependent only on
the source location as originally suggested by Koopman et al. [22]. The partial derivative of the fictitious
normal source particle velocity with respect to measurement surface location, z, is presented in Appendix A.
It is shown there that the amplitude of the derivative of the fictitious normal source particle velocity is
reduced when the virtual source surface is located further away from the actual source. This is also true
when the measurement or reconstruction surface is located further away from the actual source. So, by
introducing a virtual source plane, the dependence of the fictitious source particle velocity on measurement
location and projection distance is reduced. The fictitious source particle velocity is estimated by using a
regularized least square solution that is optimal for the measurement pressure and location and geometry of
the hologram.

Eq. (10) differs from the Rayleigh integral in that a fictitious source particle velocity is used, and the
fictitious source particle velocity is a function of both source and measurement location. In contrast, the
Rayleigh integral is

pðrÞ ¼ �
iro
2p

Z Z
eikR

R
uzðrsÞdS, (13)

and the source particle velocity is a function only of source location and is independent of measurement
location. Eq. (8) reduces to the Rayleigh integral for sources located on an infinite rigid baffle. A detailed
description of the discretization and the estimation of the regularized inverses of both Eqs. (10) and (13) are
presented next.

2.2. Discretization of the relation between source property and measurement pressure

Eq. (10) can be expressed in explicit, discretized form as

p1 ¼ �
ior0DxsDys

4p
w1

eikRv11

Rv11
w2

eikRv12

Rv12
� � � wN

eikRv1N

Rv1N

h i

� ½ufic;z;sv11 ufic;z;sv12 � � � ufic;z;sv1N �
T,

p2 ¼ �
ior0DxsDys

4p
w1

eikRv21

Rv21
w2

eikRv22

Rv22
� � � wN

eikRv2N

Rv2N

h i

� ½ufic;z;sv21 ufic;z;sv22 � � � ufic;z;sv2N �
T,

..

.
(14)

pM ¼ �
ior0DxsDys

4p
w1

eikRvM1

RvM1
w2

eikRvM2

RvM2
� � � wN

eikRvMN

RvMN

h i

� ½ufic;z;svM1 ufic;z;svM2 � � � ufic;z;svMN �
T,

where Dxs and Dys are the measurement spacings on the source plane in the x- and y-directions, respectively,
wj is an appropriate weighting for estimating the integrals depending on the order of integration [30], Ri,j is the
distance from a point on the source (xsj,ysj,0) to a position on the hologram (xi,yi,z), which is
Ri,j ¼ [(xi�xsj)

2+(yi�ysj)
2+z2]1/2, N is the total number of reconstruction points on the source surface, and

M is the total number of measurement points on the hologram or reconstruction surface. Similarly, Rvi,j is the
distance from a point on the virtual source plane (xsvj,ysvj,zsv) to a position on the hologram (xi,yi,z), and it is
given by Rvi,j ¼ [(xi�xsvj)

2+(yi�ysvj)
2+(z�zsv)

2]1/2.
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By introducing the optimal fictitious source particle velocity for the measurement pressure, Eq. (14)
becomes

p1 þ �ðp1Þ

p2 þ �ðp2Þ

..

.

pM þ �ðpM Þ

2
6666664

3
7777775
¼ �

ior0DxsDys

4p

w1
eikRv11

Rv11
w2

eikRv12

Rv12
� � � wN

eikRv1N

Rv1N

w1
eikRv21

Rv21
w2

eikRv22

Rv22

..

.
wN

eikRv2N

Rv2N

..

. ..
. ..

. ..
.

w1
eikRvM1

RvM1
w2

eikRvM2

RvM2
� � � wN

eikRvMN

RvMN

2
6666666664

3
7777777775

�

uopt;fic;z;sv1

uopt;fic;z;sv2

..

.

uopt;fic;z;svN

2
6666664

3
7777775
, (15)

where e(pi) is the error in the reconstructed pressure on the measurement surface due to the substitution of a
fictitious source particle velocity dependent on measurement location for the fictitious source particle velocity
dependent only on source location. For the purpose of finding the optimal fictitious source particle velocity,
the error in the reconstructed pressure on the measurement surface is approximated as zero, and Eq. (15) can
be approximated as

p1

p2

..

.

pM

2
6666664

3
7777775
¼ �

ior0DxsDys

4p

w1
eikRv11

Rv11
w2

eikRv12

Rv12
� � � wN

eikRv1N

Rv1N

w1
eikRv21

Rv21
w2

eikRv22

Rv22

..

.
wN

eikRv2N

Rv2N

..

. ..
. ..

. ..
.

w1
eikRvM1

RvM1
w2

eikRvM2

RvM2
� � � wN

eikRvMN

RvMN

2
6666666664

3
7777777775

�

uopt;fic;z;sv1

uopt;fic;z;sv2

..

.

uopt;fic;z;svN

2
6666664

3
7777775
, (16)

i.e., the fictitious source particle velocity on the virtual source plane that is optimal for the measurement
pressure is used in Eq. (16) instead of that shown in Eqs. (9) and (14), which is dependent on measurement and
reconstruction location. The subscript of the fictitious source particle velocity on the virtual source plane in
Eqs. (15) and (16) is changed to indicate that it is optimal for the reconstruction of measurement pressure on
the measurement surface. From Eq. (16), the optimal fictitious source particle velocity on the virtual source
plane can be estimated from pressure measurements by evaluating the regularized least square inverse of the
transfer matrix in Eq. (16).

The use of an appropriate virtual source plane at location zv ¼ d allows an estimation based on Eq. (16) to
be more accurate; since Rv4R, the near-field term in Eq. (11) is smaller than that in Eq. (9): i.e., the variation
of the fictitious source particle velocity due to distance R on the virtual source plane is smaller than that on the
actual source plane. This approximation becomes more accurate when KRvb1 and RvbDðz� zs;vÞ. Under
those conditions, the dependence of Eq. (11) on the distance R is reduced. However, the use of a larger Rv does
not necessarily imply a more accurate estimation of Eq. (11) or (14). For example, cases in which the virtual
source location is farther away from the actual source location may have decreased projection accuracy
compared to cases where the virtual source location is closer to the actual source location. Therefore, an
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optimal virtual source plane location, zv ¼ d, exists for a specific source and measurement configuration. This
location depends on the wave number content and signal-to-noise ratio of the measurement pressure,
geometry of the measurement surface, etc.

Once the optimal, regularized least square fictitious source particle velocity is estimated on the virtual source
plane, the pressure on any surface beyond the actual source surface can be estimated by applying the
appropriate transfer matrix. The Rayleigh integral shown in Eq. (13) can be expressed in explicit, discretized
form as

p1

p2

..

.

pM

2
6666664

3
7777775
¼ �

ior0DxsDys

2p

w1
eikR11

R11
w2

eikR12

R12
� � � wN

eikR1N

R1N

w1
eikR21

R21
w2

eikR22

R22

..

.
wN

eikR2N

R2N

..

. ..
. ..

. ..
.

w1
eikRM1

RM1
w2

eikRM2

RM2
� � � wN

eikRMN

RMN

2
6666666664

3
7777777775

�

uz;s1

uz;s2

..

.

uz;sN

2
6666664

3
7777775
. (17)

Finally, Eqs. (16) and (17) can be expressed in matrix form as

p ¼ Cvuopt;fic;z;sv, (18)

and,

p ¼ Cuz;s, (19)

respectively, where p is a column vector of the measured or reconstructed pressures, uz,s is a column vector of
the particle velocities on the source plane, and C is a transfer matrix relating the particle velocity on the source
plane to the measured or reconstructed pressures. The quantity uopt,fic,z,sv is a column vector consisting of the
least square fictitious particle velocities on the virtual source plane, and Cv is a transfer matrix relating the
fictitious particle velocities on the virtual source plane to the measured or reconstructed pressures.

The estimate of the particle velocity of a source on an infinite rigid baffle can be found by inverting the
transfer matrix and multiplying it by the measurement pressure vector on the hologram: i.e.,

uz;s ¼ C�1p. (20)

The estimate of the particle velocity may be corrupted by high wave number component noise that is
amplified during backward projection. Here a least square regularization procedure is introduced that can
reduce corruption during the inversion procedure. That regularization is implemented as

uopt;fic;z;sv � ðC
H
v Cv þ s2IÞ�1CH

v p, (21)

where H denotes the Hermitian or conjugate transpose, I is the identity matrix, and the regularization
parameter, s, is, chosen to be [4,5]

s2 ¼ ½CH
v Cv�ii10

�SNR=10. (22)

Both the inverse Rayleigh method and SONAH procedures require the choice of two regularization or filtering
parameters: the position of the virtual source plane, d, and the signal-to-noise ratio, s, that is comparable in
effect to the cutoff wave number, kc, that is used in conventional NAH. Eq. (21) represents the regularized
least squares solution for the fictitious particle velocity on the virtual source plane.

To obtain accurate particle velocities from near-field pressure measurements, uopt,fic,z,sv should be estimated
on a virtual source plane and then forward projected to reconstruct the pressure on the actual source plane or
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on any plane located away from the source using Eq. (18). The particle velocity on the actual source surface or
any other plane can then be estimated by using Euler’s equation: i.e.,

uzðrÞ ¼
1

ir0o
@pðrÞ

@z
: (23)

If the number of pressure and particle velocity measurements, M and N, in Eq. (14) are equal, then the
number of elements in the transfer matrix is N2. The transfer matrix has a large number of elements that are
repeated, and the repetition of the elements in the transfer matrix is in the same form as in the SONAH matrix
[6]. If the shape of the hologram is square, and the measurement spacings, Dxs and Dys, are equal, onlyffiffiffiffiffi

N
p
ð
ffiffiffiffiffi
N
p
þ 1Þ=2 elements are unique. By avoiding repeated calculations in the planar geometry, the number of

calculations can be reduced by a factor of 2N.
The particle velocity prediction procedure based on near-field pressure measurements that was presented in

this section is referred to as the ‘‘inverse Rayleigh method’’ in this paper. It should be noted that the particle
velocity estimated by using that procedure is different from that estimated using the inverse of the discretized
Rayleigh integral in general. They are the same only for sources located on an infinite rigid planar baffle and
when the pressure measurements are noise-free.

3. Baffled plate measurements

In Section 2, the procedure for prediction of particle velocity based on near-field measurements on a planar
hologram was discussed. In this section, direct particle velocity measurements on the surface of a baffled
aluminum plate are compared to particle velocities predicted by using NAH, SONAH and the inverse
Rayleigh techniques operating on near-field pressure measurements.

3.1. Baffled plate measurement description

The source particle velocity and near-field pressure measurements were made on a point-driven, aluminum
plate, 35 cm� 47 cm, mounted in a rigid baffle. Resonance frequencies were found by a tap test using a PCB
impact hammer prior to source surface velocity measurements with the plate attached to the baffle. The shaker
was driven by sinusoidal signals at 163 and 580Hz, which corresponded to the (1,1) and (1,3) modes of the
baffled plate, respectively. The baffled plate near-field measurement geometry is given in Fig. 2. Photographs
of the plate and baffle used for the measurements are provided in Fig. 3. The near-field pressure measurement
plane, i.e., the hologram, was 1.6 cm above the plate or source plane. It consisted of 25� 27 measurements
with a 2 cm microphone spacing both in the x- and y-directions. The measurement surface was a 50 cm� 54 cm
rectangle for the near-field pressure measurements, and a 34 cm� 46 cm rectangle for the direct particle
velocity measurements (consisting of 17� 23 measurements with a 2 cm accelerometer spacing). The velocity
x

z

y

Source plane Hologram

Source region

Rigid baffle

Fig. 2. Baffled plate near-field measurement geometry definition.
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Fig. 3. Baffled plate source: (a) aluminum plate of 35 cm� 47 cm and (b) aluminum plate at the center of 1.8m� 1.8m square rigid baffle.
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was measured over the entire source area of the baffled aluminum plate. The center of both the hologram and
the source lay on the z-axis. The rigid baffle was 1.8m� 1.8 square. The coordinate system origin was at the
center of both the plate and baffle.

Twenty-five TMS T130C21 1
4
-in microphones were used to make the near-field sound pressure

measurements. Two PCB 353B17 accelerometers were attached to the plate to measure the velocity of the
plate. The accelerometers were calibrated with a Brüel & Kjær accelerometer calibrator Type 4291 at 79.6Hz,
1g peak acceleration.

A sinusoidal signal was computer generated and played through a JBL power amplifier Model 6230.
A Wavetek Dual Hi/Lo filter Model 852 was used for low pass filtering of the sinusoidal signal with a cutoff
frequency of 1000Hz. The reference signal was taken directly from the output of the amplifier after it was low
pass filtered. A Brüel & Kjær Mini Shaker Type 4810 was used to drive the center of the aluminum plate.

First, a 1
4
-in microphone was calibrated for level by using a G.R.A.S. Pistonphone Type 42AA, calibrating

its amplitude at 250Hz, 114 dB. Then, the other 24 scanning 1
4
-in microphones were calibrated both in

amplitude and phase by using the Brüel & Kjær Z1 0055 Sound Intensity Calibrator over the entire frequency
range of interest relative to the 1

4
-in microphone previously calibrated for level by using a G.R.A.S.

Pistonphone.
Simultaneous near-field sound pressure measurements were made at 25 equally-spaced locations 1.6 cm

above the baffled plate. These measurements covered the complete width of the hologram. The frequency
range used for the sound pressure measurements was 0–2048Hz. Twenty-seven sets of measurements were
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made beginning at y ¼ �26 cm and progressing to y ¼ 26 cm in 2 cm increments. A Hanning window was
applied to each time data record. The low pass filtered signals were fast Fourier transformed and were
averaged 10 times to estimate the required transfer function between the output of the JBL amplifier and the
microphone signals.
3.2. Near-field measurement results

The near-field sound pressure measurements above the baffled plate are shown in Fig. 4. The magnitudes of
the frequency response functions (the H1 transfer functions between the response of the microphones and the
output of the JBL amplifier) representing the measured pressure amplitudes for the (1,1) and (1,3) modes of
the plate are both shown in Fig. 4. Note that all of the measurement and prediction result figures in the present
work were generated using Phong interpolation [31]. Although the measurements and predictions were made
on a finite 2 cm spacing, the quantities themselves are continuous, and therefore were plotted using
interpolation.

The velocity on the baffled plate source was measured with an accelerometer at the same two frequencies:
163 and 580Hz. The magnitudes of the directly measured and back-projected source particle velocities based
on the near-field pressure measurements 1.6 cm above the plate using the inverse Rayleigh, SONAH, and
conventional NAH procedures are shown in Figs. 5 and 6.

The root mean square percentage error, which is referred to as mean square percentage error in the present
work, is defined to compare the directly measured or true and predicted quantity as

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijpt;i � ps;ij

2P
jjpt;jj

2

vuut ð�100Þ, (24)

where pt is the directly ‘‘measured or true’’ quantity, and ps is the estimated quantity from the near-field
measurement. The mean square error between the directly measured and back-projected velocities for the
three procedures is given in Table 1. The filtering parameter d in Table 1 is the position of the virtual source
plane relative to the actual source plane along the z-axis.

The SONAH procedure gives back-projected source velocities in general agreement with the measured
source velocities, and the magnitude of the back-projected velocity obtained by using SONAH is very small
beyond the source region, as would be expected. The back-projected source velocity obtained by using
conventional NAH differed considerably from the directly measured velocity, especially around the edge of
Fig. 4. Baffled plate, measured pressure on hologram plane: (a) |p|, 163Hz and (b) |p|, 580Hz.
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Fig. 5. Baffled plate, measured and reconstructed particle velocity on source plane using inverse Rayleigh, SONAH and conventional

NAH at 163Hz: (a) |uz|, measured; (b) |uz|, inverse Rayleigh; (c) |uz|, SONAH; and (d) |uz|, NAH.
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the source region, at both frequencies. In particular, the back-projected velocity calculated using NAH
suggests that the source is circular at 163Hz, while it is actually (based on the directly measured velocity)
rectangular.

When compared to the peak pressure level at the center of the plate, the level of the measured pressure at the
hologram edge at 163Hz is lower than that at 580Hz. But the back-projected particle velocity obtained using
NAH is more accurate at 580Hz than at 163Hz, which is not typical. The pressure distribution in the
y-direction was not affected by spatial truncation as much as that in x-direction. It is possible that the spatial
truncation effect of the measurement is less evident when certain higher mode shapes are considered. This is
due to a repeated mode shape as illustrated by the 580Hz case.

4. Baffled plate numerical simulation

A numerical simulation of the baffled plate was performed to confirm the accuracy of the source particle
velocity prediction based on near-field measurements both with known signal-to-noise ratios and without
any measurement noise. The geometry of the near-field measurements was the same as in the experimental
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Fig. 6. Baffled plate, measured and reconstructed particle velocity on source plane using inverse Rayleigh, SONAH and conventional

NAH at 580Hz: (a) |uz|, measured; (b) |uz|, inverse Rayleigh; (c) |uz|, SONAH; and (d) |uz|, NAH.

Table 1

Mean square error between source particle velocity prediction based on near-field measurements and actual measurements on baffled plate

using the accelerometers and corresponding filtering parameters.

f (Hz) Inv. Rayl. (%) SONAH (%) NAH (%)

163 12.4 (d ¼ �5 cm, y ¼ 10 dB) 11.4 (d ¼ �10 cm, y ¼ 10 dB) 36.6 (kc ¼ 15 rad/m)

580 12.9 (d ¼ �3 cm, y ¼ 10 dB) 13.4 (d ¼ �10 cm, y ¼ 10 dB) 21.7 (kc ¼ 28 rad/m)
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baffled plate measurement described in Section 3, except that the spacing between hologram and source
plane was 2 cm. In addition to a simulation that reproduced the experimental geometry, a simulation was
generated with a hologram surface that was five times larger in both directions than the original hologram
surface.
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4.1. Baffled plate numerical simulation description

The particle velocity of the baffled plate was simulated by using a combination of sinusoidal functions,
given by

uz;sðxs; ysÞ ¼ sinðmpxs=LxÞ sinðnpys=LyÞ ðfor 0pxspLx and 0pyspLyÞ

¼ 0 ðotherwiseÞ (25)

for the (m, n) mode of the plate with dimensions Lx and Ly.
The near-field pressure was calculated by using the simulated source particle velocity combined with the

Rayleigh integral given by Eqs. (13) or (17). In order to estimate the discretized Rayleigh integral more
accurately for the purpose of generating simulated near-field pressure, evaluation point spacings in the source
plane were made smaller than in the hologram plane. First and second order interpolation functions were
implemented for integration. Small differences between the pressure generated using first and second order
interpolation function were observed when the evaluation point spacing on source plane was 2 cm. As the
spacing on the source plane was reduced, the difference between the pressure generated using first and second
order interpolation functions became negligible. The final choice of evaluation point spacing on the source
plane was 0.2 cm in both the x- and y-directions for the near-field pressure generation. For the simulated
particle velocity measurements on the source plane, a measurement spacing of 2 cm was used to compare with
prediction, just as in the actual measurements with accelerometers in Section 3.

4.2. Baffled plate numerical simulation results

The mean square error between true and predicted (via simulation) source particle velocities is shown in
Tables 2 and 3. Cases with and without random noise added to the measurement pressure were considered in
the simulation. The mean square prediction error of the inverse Rayleigh method is slightly smaller than that
of SONAH, but the mean square prediction error of NAH is much larger than that of either the inverse
Rayleigh method or of SONAH for both cases with and without measurement noise. The mean square
prediction error of NAH is almost unchanged by adding 20 dB SNR random noise to the measurement
pressure: see Table 3. The latter observation provides evidence that measurement noise up to 20 dB SNR does
not contribute significantly to the overall prediction error for the source type and measurement geometry
considered in the simulation. Rather, the more dominant source of the projection error when using NAH is
due to spatial truncation effects. If the size of original hologram is increased by five times in the x- and
y-directions, the NAH error is reduced and becomes similar to those of the inverse Rayleigh and SONAH
methods for both cases with and without random noise added to the measurement pressure, as shown in
Tables 2 and 3. So the major cause of the NAH projection error is confirmed to be spatial truncation.
Table 2

Mean square error between source particle velocity prediction based on simulated noise free near-field measurements and true velocity.

Mode shape f (Hz) Inv. Rayl. (%) SONAH (%) NAH (%) NAH Lg. (%)

(1,1) 163 0.53 1.59 36.7 1.00

(1,3) 580 0.54 0.60 17.7 0.63

Table 3

Mean square error between source particle velocity prediction based on simulated near-field measurements with 20 dB SNR random noise

and true velocity.

Mode shape f (Hz) Inv. Rayl. (%) SONAH (%) NAH (%) NAH Lg. (%)

(1,1) 163 7.99 9.19 36.9 8.34

(1,3) 580 9.10 9.91 18.1 8.26
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Table 4

Mean square error between source particle velocity prediction based on simulated noise free near-field measurements using NAH and true

velocity by artificially changing mode shapes.

f (Hz) 163 163 163 580 580 580

Mode shape (1,1) (1,3) (3,3) (1,1) (1,3) (3,3)

MSE (%) 36.7 22.2 14.8 34.1 17.7 12.8
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Although not illustrated in the present work, it was found that the mean square back projection error also
depends on source and measurement geometry: i.e., the mean square error increases as higher source wave
number content is introduced and the measurement surface is placed further away from the source.

As shown in Tables 2 and 3, the mean square error of NAH with the original hologram at 580Hz is much
lower than that at 163Hz. This difference is not apparent in the results obtained using the inverse Rayleigh
and SONAH procedures, and NAH with a larger hologram. To confirm whether the mean square error of
NAH is related more to frequency than to mode shapes, a numerical simulation was performed with an
artificial combination of two frequencies and three different mode shapes. The mean square error of NAH
with three different mode shapes, (1,1), (1,3) and (3,3), at frequencies of 163 and 580Hz is shown in Table 4. It
can be seen that the mean square error of NAH is much more sensitive to mode shape than frequency, an
effect that is possibly related to the performance of the Tukey window. True and reconstructed particle
velocities on the source plane obtained by using the inverse Rayleigh and SONAH procedures, and
conventional NAH with original and larger holograms at 163 and 580Hz are shown in Figs. 7 and 8,
respectively. Some details of the source are lost during the reconstruction due to the 20 dB SNR random noise
added to the measurement pressure: that is true for all reconstruction procedures. However, more details
about the source were obtained by using the inverse Rayleigh and SONAH procedures than when using
conventional NAH, especially at 163Hz in the vicinity of the source edge when the pressure was measured
with the original hologram size. As shown in Fig. 7(d), the mode shape of source particle velocity
reconstructed using conventional NAH with the original hologram size is very close to circular instead of
rectangular, especially at the edge of the source. However, the shape of the source particle velocity
reconstructed using conventional NAH with a larger hologram size is very similar to true source particle
velocity.
5. Multi-pole numerical simulation

A multi-pole numerical simulation was performed to confirm the accuracy of source particle velocity
prediction based on near-field measurements both with known signal-to-noise ratios and without any
measurement noise. The major difference with the baffled plate simulation in Section 4 is that the multi-pole
numerical simulation was performed without any baffle, in which case the Rayleigh integral is not valid.
The accuracy of the various procedures was compared over a range of frequencies. The geometry of near-field
measurements was the same as the baffled plate numerical simulation described in Section 4. The simulation
was used to compare the relative accuracies of inverse Rayleigh, SONAH, and NAH in predicting source
particle velocity by using the original and the larger hologram surfaces.
5.1. Multi-pole numerical simulation description

The radiated pressure was generated by using a multi-pole that consisted of ten randomly located in- or out-
of-phase coherent monopoles each with unit amplitude. The locations and phases of the 10 monopoles used in
the multi-pole simulation are shown in Table 5. All of the monopoles were located at either z ¼ �5 or �7 cm,
and within a 17 cm� 23 cm rectangle centered at the z-coordinate axis. The multi-pole was made to fit inside
an area that was 25 percent of the original hologram surface area in order to reduce truncation effects at the
edges of the hologram.
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Fig. 7. Simulated baffled plate, true and reconstructed particle velocity on source plane using inverse Rayleigh, SONAH and conventional

NAH at 163Hz measured with 20 dB SNR random noise: (a) |uz|, true; (b) |uz|, inverse Rayleigh; (c) |uz|, SONAH; (d) |uz|, NAH; and (e)

|uz|, NAH with larger measurement aperture.

Y.T. Cho et al. / Journal of Sound and Vibration 324 (2009) 587–607 601
The particle velocities at the z ¼ 0 plane were generated by using Euler’s equation on a plane the same size
as the baffled plate simulation shown in Section 4. The near-field pressures were generated with and without
20 dB SNR random noise with identical hologram size and location as in the baffled plate simulation shown in
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Fig. 8. Simulated baffled plate, true and reconstructed particle velocity on source plane using inverse Rayleigh, SONAH and conventional

NAH at 580Hz measured with 20 dB SNR random noise: (a) |uz|, true; (b) |uz|, inverse Rayleigh; (c) |uz|, SONAH; (d) |uz|, NAH; and (e)

|uz|, NAH with larger measurement aperture.

Y.T. Cho et al. / Journal of Sound and Vibration 324 (2009) 587–607602
Section 4. The particle velocity was predicted at the z ¼ 0 plane from near-field measurement by using NAH,
SONAH and the inverse Rayleigh method. The mean square percentage error between the predicted and true
velocities was evaluated with and without measurement noise.
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Table 5

Location and strength of ten coherent monopoles used in multi-pole simulation.

(x,y,z) (cm) Q

(�7.0,8.2,�5) 1

(�0.7,7,�7) 1

(�2.1,3.2,�7) �1

(�6.4,�4.2,�7) �1

(�2.2,�8.2,�5) 1

(1,�4.2,�5) �1

(2.2,�1.9,�7) 1

(5.9,�8.1,�5) �1

(2.8,3.4,�5) 1

(6.1,9.8,�7) �1

Fig. 9. Multi-pole simulation, mean square error between true particle velocity and prediction from near-field pressure measurement in

terms of frequencies using inverse Rayleigh with first and second order interpolation functions, conventional NAH with identical and

larger measurement aperture, and SONAH procedures. o inverse Rayleigh (first order estimation): &: inverse Rayleigh (second order

estimation); *: NAH; � : NAH (larger hologram); D: SONAH. (a) Percentage mean square error, measurement without noise and (b)

percentage mean square error, measurement with 20 dB random noise.
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5.2. Multi-pole numerical simulation results

The multi-pole numerical simulation was performed at eight frequencies from 1000 to 8000Hz, where
the Nyquist cutoff frequency for spatial sampling was 8575Hz. The multi-pole measurement pressure in the
x- and y-directions was observed to be highly frequency dependent. The mean square error between the
directly measured and predicted particle velocities estimated from the near-field pressure measurements is
shown in Fig. 9. The percentage mean square error was calculated at eight frequencies with and without 20 dB
SNR random measurement noise. The mean square prediction error obtained when using either NAH with
the larger hologram or the inverse Rayleigh method (with first and second order interpolation functions for
evaluating the integrals) was almost identical over the range of frequencies considered. The mean square
prediction error of NAH with the original sized hologram was the largest regardless of frequency and SNR
level. The performance of SONAH, shown in Fig. 9(a), in terms of mean square prediction error, is much
better than that of NAH. With the exception of the 8000Hz case, the SONAH mean square error was between
one and two percent. The prediction error obtained by using all of procedures except NAH is very similar for
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Fig. 10. Multi-pole simulation, true particle velocity and prediction from near-field pressure measurement at 1000Hz without

measurement noise: (a) true; (b) inverse Rayleigh, first order; (c) inverse Rayleigh, second order; (d) conventional NAH; (e) NAH with

expanded measurement aperture; and (f) SONAH.
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most of the frequencies both with and without measurement noise. Since the prediction error obtained using
NAH with the larger hologram is as accurate as those of inverse Rayleigh, and SONAH procedures, it can be
concluded that the spatial limitation of the original sized NAH hologram was the major cause of error.
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True and predicted particle velocities at 1000Hz obtained by using the NAH, SONAH, and inverse
Rayleigh procedures without measurement noise is shown in Fig. 10. The errors of all prediction procedures
excluding NAH with the original hologram size are practically identical except around the edge of the
hologram. This is confirmed by the mean square errors shown in Fig. 9.

6. Conclusions

The normal particle velocity on or closer to the source plane can be predicted based on near-field pressure
measurements by using NAH, SONAH, and the inverse Rayleigh procedures. It was found that the prediction
error of NAH was the largest amongst the procedures considered in this work when all the measurements were
made on the same hologram surface. The particle velocity prediction error obtained when using NAH with a
larger hologram surface, SONAH, and the inverse Rayleigh method were very similar overall.

The inverse Rayleigh results can be estimated very efficiently by avoiding repeated calculations when
estimating the transfer matrix between the fictitious source velocity on the virtual source plane and the
measured or reconstructed pressure. The accuracy of the inverse Rayleigh method is comparable to that of
SONAH, and NAH with a larger hologram surface. This has been shown for numerical simulation cases with
and without measurement noise in addition to actual baffled plate measurements. The inverse Rayleigh
method was also used to predict the particle velocity from multi-pole near-field pressure measurements
without any baffle and was found to be accurate over a range of frequencies. It can be concluded that the
inverse Rayleigh method is valid for general cases of sources with or without an infinite baffle.

The source velocities estimated using SONAH and the inverse Rayleigh method based on near-field
experimental measurements were reasonably accurate even though there was some discrepancy in the peak level
of the baffled plate velocity. This result may be partly due to the use of different types of transducers calibrated at
two different frequencies for velocity and pressure measurements. The accuracy of SONAH and the inverse
Rayleigh method for source particle velocity prediction were very similar according to the results of numerical
simulations and measurement in an anechoic chamber. Thus the main conclusion of the present work is that both
SONAH and the inverse Rayleigh method provide a useful set of tools that are as accurate as NAH (when
performed with a much larger measurement aperture) for source identification and prediction of the sound field.

Appendix A

In this section, the partial derivative of the fictitious source particle velocity is presented to allow the
estimation of the relative accuracy of the relation between source property and measurement pressure by
assuming a fictitious source particle velocity as the source property independent of measurement location. The
partial derivative of the fictitious source particle velocity shown in Eq. (11) with respect to z, is expressed as
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The definition of the source and near-field measurement geometry with the virtual source plane for estimation
of the derivative of the fictitious source particle velocity is shown in Fig. A1. The normalized amplitude of the
derivative of the fictitious source particle velocity in terms of the virtual source plane location, zs,v, angle, y, in
the normal direction to the measurement plane, frequency, and measurement surface location z is shown in
Fig. A2. The amplitude of the derivative is normalized for zs,v ¼ �0.02m, y ¼ 451, frequency ¼ 1000Hz, and
z ¼ 0.1m. The amplitude of the derivative of the fictitious source particle velocity is a maximum when zs,v ¼ 0,
i.e., when the virtual source plane is located at the actual source location, and reduces as the virtual source
plane is moved away from the actual source location. The amplitude of the derivative of fictitious source
particle velocity is a maximum at y ¼ 0, z ¼ 0.05m, and at the lowest frequency, and is relatively constant
except at low frequencies.
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Fig. A2. Normalized amplitude of derivative of fictitious source particle velocity in terms of different variables: (a) |zs,v|; (b) y;
(c) frequency; and (d) z.

zs,v z
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R�

z

y

Source 
θ

p

Fig. A1. Definition of source and near-field measurement geometry with virtual source plane for estimation of derivative of fictitious

source particle velocity.
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